Core Sampling Framework for Pixel Classification
نویسندگان
چکیده
The intermediate map responses of a Convolutional Neural Network (CNN) contain information about an image that can be used to extract contextual knowledge about it. In this paper, we present a core sampling framework that is able to use these activation maps from several layers as features to another neural network using transfer learning to provide an understanding of an input image. Our framework creates a representation that combines features from the test data and the contextual knowledge gained from the responses of a pretrained network, processes it and feeds it to a separate Deep Belief Network. We use this representation to extract more information from an image at the pixel level, hence gaining understanding of the whole image. We experimentally demonstrate the usefulness of our framework using a pretrained VGG-16 [1] model to perform segmentation on the BAERI dataset [2] of Synthetic Aperture Radar(SAR) imagery and the CAMVID dataset [3].
منابع مشابه
طبقهبندی زیرپیکسلی تصاویر ابرطیفی براساس تعمیم الگوریتم معاوضه پیکسلی و ارزیابی آن
The capability of the matter identification is developed considerably in hyperspectral images. The spectral reflectance of surfaces in these imaging systems in the visible and near infrared range of the electromagnetic spectrum is recorded in extremely narrow and continuous bands. But for some reasons, such as existence the mixed pixels and low spatial resolution of these images, is difficult t...
متن کاملDeep Feature Learning for Hyperspectral Image Classification and Land Cover Estimation
The differences in spatial sampling between field measurements and remote-sensing imagery can hinder the exploitation of contemporary data. When the field-based sampling is higher than airborne and spaceborne imagery, each pixel is naturally associated with multiple pixels due to the multiplexing of the reflectances of different materials. To address this scale inconsistency, we propose the int...
متن کاملComparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملComparison of Performance in Image Classification Algorithms of Satellite in Detection of Sarakhs Sandy zones
Extended abstract 1- Introduction Wind erosion as an “environmental threat” has caused serious problems in the world. Identifying and evaluating areas affected by wind erosion can be an important tool for managers and planners in the sustainable development of different areas. nowadays there are various methods in the world for zoning lands affected by wind erosion. One of the most important...
متن کاملAnalysis Accruing of Sentinel 2A Image’s Classification Methods Based on Object Base and Pixel Base in Flood Area Zoning of Taleqan River
Flood zonation mapping is one of the priorities for the soil and water management, which Remote Sensing (RS) capabilities are very applicable to this issue. The main objective of this research was study of accuracy of the Object oriented and Pixel based methods for flood zonation mapping in the Taleghan River basin. Therefore, the Sentinel 2A satellite image of the study area classified using s...
متن کامل